Med Microbiol Immunol. 2023 May 24. doi: 10.1007/s00430-023-00767-8. Online ahead of print.
ABSTRACT
Adult T-cell leukemia/lymphoma (ATLL) is pathogen-caused cancer that is progressed after the infection by human T-cell leukemia virus type 1. Four significant subtypes comprising acute, lymphoma, chronic, and smoldering have been identified for this cancer. However, there are no trustworthy prognostic biomarkers for these subtypes. We utilized a combination of two powerful network-based and machine-learning algorithms including differential co-expressed genes (DiffCoEx) and support vector machine-recursive feature elimination with cross-validation (SVM-RFECV) methods to categorize disparate ATLL subtypes from asymptomatic carriers (ACs). The results disclosed the significant involvement of CBX6, CNKSR1, and MAX in chronic, MYH10 and P2RY1 in acute, C22orf46 and HNRNPA0 in smoldering subtypes. These genes also can classify each ATLL subtype from AC carriers. The integration of the results of two powerful algorithms led to the identification of reliable gene classifiers and biomarkers for diverse ATLL subtypes.
PMID:37222763 | DOI:10.1007/s00430-023-00767-8